フーリエ変換とは無限次元空間の直交分解のひとつである

前回の記事では, 2次元のベクトルに対して, 内積を通して直交分解を理解しました. 2次元空間での内積 \((\cdot,\,\cdot)\) には, 大まかに言って次の3つの性質があります. (1) 任意の \(x\in \mathbb{R}^2\) に対して, \((x,\, x)\ge 0\)であり, さらに \((x,\, x)= 0\) と \(x=0\) は同値 (2) 任意の \(x … 続きを読む フーリエ変換とは無限次元空間の直交分解のひとつである